ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Development of novel 2-[4-(aminoalkoxy)phenyl]-4(3H)-quinazolinone derivatives as potent and selective histamine H_3 receptor inverse agonists

Takashi Mizutani, Tsuyoshi Nagase, Sayaka Ito, Yasuhisa Miyamoto, Takeshi Tanaka, Norihiro Takenaga, Shigeru Tokita, Nagaaki Sato*

Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan

ARTICLE INFO

Article history:
Received 14 July 2008
Revised 25 August 2008
Accepted 8 October 2008
Available online 11 October 2008

Keywords: Histamine H_3 receptor inverse agonists hERG K* channel α_{1A} -Adrenoceptor Quinazolinone Histamine release assay

ABSTRACT

Novel 2-[4-(aminoalkoxy)phenyl]-4(3H)-quinazolinone derivatives were identified as potent human H_3 receptor inverse agonists. After systematic modification of lead ${\bf 5a}$, the potent and selective analog ${\bf 5r}$ was identified. Elimination of hERG ${\bf K}^+$ channel and human α_{1A} -adrenoceptor activities is the main focus of the present study.

© 2008 Elsevier Ltd. All rights reserved.

The histamine H₃ receptor was pharmacologically discovered in 1983, and genetically identified in 1999. The genetic identification of the H₃ receptor generated significant interest, and shifted both the detailed pharmacological characterization of the receptor and associated drug discovery efforts from academia and pharmaceutical industries.3 Signaling through the H3 receptor activates G-proteins that inhibit adenylate cyclase activity and reduce intracellular cAMP level.^{2,4} The H₃ receptor, which is predominantly expressed in the CNS, is localized on the presynaptic membrane as an autoreceptor, and negatively regulates the release and synthesis of histamine. In addition, the H₃ receptor is known to modulate the release of other neurotransmitters such as norepinephrine, dopamine, acetylcholine, serotonin, and GABA.⁵ Due to the effects of H₃ signaling on multiple neuronal transmitters, it has been suggested that H₃ antagonists/inverse agonists could be effective therapeutic agents for several CNS-related disorders.⁶ In animal models, H₃ receptor antagonists/inverse agonists have been shown to enhance wakefulness, attentive and cognitive behaviors, and to reduce feeding and body weight.^{7,8} Since the identification of the H₃ receptor genes, various classes of non-imidazole H₃ receptor antagonists have been developed to target the CNS H₃ receptor. 3,7,10 Among them, **1** (BF2.649), 9,11 **2** (ABT-239) 12 and 3 (GSK189254)¹³ have entered clinical trials for treatment of CNS disorders such as excessive daytime sleepiness, schizophrenia, and cognitive dysfunctions (Fig. 1).

We previously reported a series of novel quinazolinone H_3 inverse agonists. He Representative quinazolinone lead $\bf 4$ is shown in Figure 2. Based on structure–activity relationships (SAR) developed by modification of lead $\bf 4$, we designed and synthesized regioisomeric quinazolinone $\bf 5a$ in order to further extend structural diversity. The regioisomeric quinazolinone derivative $\bf 5a$ was found to have 2-fold more potent human H_3 (h H_3) activity than the original quinazolinone $\bf 4$; however, $\bf 5a$ displayed relatively potent affinity for both the human ether-a-go-go-related gene (hERG) K+ channel and human α_{1A} -adrenoceptor (h α_{1A}) (Fig. 2). The main focus of this communication is SAR development aimed at eliminating these off-target activities while potentiating the hH3 activity.

The synthetic route for these guinazolinone derivatives reported herein is illustrated in Scheme 1. Commercially available anthranilic acids 6 or 3-amino-2-methoxyisonicotinic acid (13) were converted to the corresponding amide 7. The amide was thermally condensed with 4-aminoalkoxy benzaldehyde 8 or 9 in the presence of a catalytic amount of p-toluenesulfonic acid, followed by oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone to furnish the desired product **5a**-**r**. Compound **13** was prepared by lithiation and carboxylation of the corresponding tert-butoxycarbonyl (Boc)-protected aminopyridine, as shown in Scheme 2. Commercially available aminopyridine 10 was protected with a Boc group to give 11, which was treated with n-BuLi in the presence of N,N,N',N'-tetramethylethylenediamine, followed by addition of solid CO2 to give carboxylic acid 12. Removal of the Boc group was effected by trifluoroacetic acid to give the desired 3-amino-2methoxyisonicotinic acid (13).

^{*} Corresponding author. Tel.: +81 29 877 2004; fax: +81 29 877 2029. E-mail address: nagaaki_sato@merck.com (N. Sato).

Figure 1. Histamine H₃ antagonists/inverse agonists in clinical trials.

Figure 2. Structures of quinazolinone 4 and regioisomer 5a.

Scheme 1. Reagents and conditions: (a) 1,1-carbonyldiimidazole, DMF, $40 \, ^{\circ}\text{C}$, $1-24 \, \text{h}$, then $R^2 \text{NH}_2$, rt, $0.5-12 \, \text{h}$, 68-99%; (b) 4-aminoalkoxy benzaldehyde **8** or **9**, p-toluenesulfonic acid, 1,4-dioxane, $120 \, ^{\circ}\text{C}$, $3-15 \, \text{h}$, then 2,3-dichloro-5,6-dicyanobenzoquinone, rt, $8-42 \, \text{h}$, 24-72%.

Scheme 2. Reagents and conditions: (a) (Boc)₂O, 1,4-dioxane, reflux, 24 h, 100%; (b) *n*-BuLi, *N*,*N*,*N*'-tetramethylethylenediamine, Et₂O, -78 °C, 1 h, then CO₂, 30 min, 70%; (c) trifluoroacetic acid, MeOH, CHCl₃, rt, 8 h, 88%.

Synthesis of the right hand aldehyde units **8** and **9** is illustrated in Schemes 3 and 4. Compound **8** was prepared from 4-hydroxybenzaldehyde (**14**) by alkylation with 3-bromochloropropane, fol-

lowed by displacement with the desired amine (Scheme 3). Synthesis of aldehyde **9** was started from the Mitsunobu condensation¹⁵ of methyl 4-hydroxybenzoate (**15**) and *tert*-butyl 4-hydroxy-

Scheme 3. Reagents and conditions: (a) 3-bromochloropropane, K_2CO_3 , DMF, 60 °C, 4 h, then R^3R^4NH , KI, DMF, 60 °C, 10–20 h, 54–60%.

1-piperidinecarboxylate. Removal of the Boc group from **16** followed by reductive alkylation with the desired ketone afforded **17**. Ester **17** was reduced with DIBAL to give the corresponding alcohol, which was oxidized with MnO₂ to give aldehyde **9** (Scheme **4**).

A series of regioisomeric quinazolinone derivatives were tested in the [35 S]GTP γ S binding assay. 16 All the compounds reduced basal GTP γ S binding, indicating that they are inverse agonists. Inhibitory activity for hERG K $^+$ channel was evaluated using the [35 S]N-[(4 R)-1'-[(2 R)-6-cyano-1,2,3,4-tetrahydro-2-naphthalenyl]-3,4-dihydro-4-hydroxyspiro[2 H-1-benzopyran-2,4'-piperidin]-6-yl]methanesulfonamide ([35 S]MK-499) binding assay 17 to assess cardiac QTc prolongation liability. Binding activity for h α_{1A} was evaluated using the [3 H]prazosin binding assay 18 to assess the potential risks of hypertension and agitation.

Variation of the 3-substituent on the quinazolinone ring of **5** was investigated first (Table 1). Substituted methyl derivatives $\mathbf{5b-d}$ displayed improved hH_3 activities compared to the parent, $\mathbf{5a}$. The benzyl derivative $\mathbf{5e}$ was 4-fold more potent ($IC_{50} = 0.31 \text{ nM}$), whereas the phenyl derivative $\mathbf{5f}$ was less potent than $\mathbf{5a}$. Potent hERG inhibitory activities of the benzyl and phenyl derivatives, $\mathbf{5e}$ and $\mathbf{5f}$, were observed, and no improvements were observed for the alkyl derivatives $\mathbf{5b-d}$. A reduced $h\alpha_{1A}$ activity was observed in $\mathbf{5e}$. Although the potent hH_3 activities of $\mathbf{5c}$ and $\mathbf{5e}$ were attractive, 3-methyl derivative $\mathbf{5a}$ was selected as a template for further SAR studies based on its hERG and $h\alpha_{1A}$ activities.

Next, the right hand piperidinopropoxy portion was optimized (Table 2). Pyrrolidine derivative $\mathbf{5g}$ showed enhanced hH_3 activity, but its off-target activities were not improved. The structurally rigid cycloalkyl piperidine derivatives $\mathbf{5h}$ and $\mathbf{5i}$ were found to possess potent hH_3 activities. The activity of cyclobutyl derivative $\mathbf{5h}$ was noticeable ($IC_{50} = 0.22 \text{ nM}$), 5-fold improvement over the parent $\mathbf{5a}$. In addition to its enhanced potency, $\mathbf{5h}$ exhibited reduced hERG ($IC_{50} = 5.6 \text{ }\mu\text{M}$) and $h\alpha_{1A}$ ($IC_{50} = 6.3 \text{ }\mu\text{M}$) activities.

Further optimization of $\mathbf{5h}$ by modification of the quinazolinone part is summarized in Table 3. The effect of introducing a methoxy group was examined first. Although substitution with a methoxy group had no influence on hH_3 activity, the 5- and 7-methoxy derivatives $\mathbf{5j}$ and $\mathbf{5l}$ showed improved off-target selectivity.

Table 1 SAR of compounds **5a**–**f**.

Compound	R	$hH_3^a IC_{50} (nM)$	$hERG^b\ IC_{50}\ (\mu M)$	$h\alpha_{1A}^{c} IC_{50} (\mu M)$
5a	Methyl	1.2	2.8	2.9
5b	Ethyl	0.87	1.7	1.3
5c	n-Propyl	0.47	1.8	1.8
5d	i-Propyl	0.87	3.0	1.1
5e	Benzyl	0.31	0.17	7.2
5f	Phenyl	1.6	0.46	2.4

- ^a Inhibition of R- α -methylhistamine-induced binding of [35 S]GTP γ S to human H_3 receptor. Values are means of at least two independent experiments. The maximum variability of each assay in this series was ± 3 -fold.
- b Inhibition of [35S]MK-499 binding to hERG K⁺ channel in HEK293 cells.
- c Inhibition of $[^{3}H]$ Prazosin binding to human α_{1A} -adrenoceptor in LMtk $^{-}$ cells.

Importantly, 8-methoxy derivative $\bf 5m$ was found to be devoid of both hERG and h α 1A activity. Encouraged by the binding profile of $\bf 5m$, we introduced several substituents at the 8-position of the quinazolinone ring $(\bf 5n-q)$. The 8-methyl and 8-chloro derivatives $\bf 5n$ and $\bf 5o$ were slightly more potent than $\bf 5h$, yet their hERG inhibitory activities were greater than desired. The 8-trifluoromethyl derivative $\bf 5p$ showed reduced hH $_3$ activity with very potent hERG inhibitory activity. The binding profile of the 8-fluoro derivative $\bf 5q$ was similar to that of the parent $\bf 5h$. Incorporation of a nitrogen atom into the 7-position of $\bf 5m$ led to the more potent derivative $\bf 5r$, which retained good selectivity against hERG and h α 1A. In addition, compound $\bf 5r$ was selective over other histamine receptor subtypes (hH $_1$, hH $_2$, and hH $_4$; IC $_5$ 0 > 10 μ M).

Compound **5r** was assessed in in vivo studies. Brain exposure and pharmacokinetics of **5r** were evaluated in Sprague–Dawley (SD) rats. Brain and plasma levels 2 h after 10 mg/kg oral dosing with **5r** were 2.96 nmol/g and 2.08 μ M, respectively. Compound **5r** exhibited a suitable pharmacokinetic profile, as summarized in Table 4.

Having demonstrated excellent potency, selectivity, pharmacokinetic profile and brain penetration, **5r** was tested for brain histamine release activity in SD rats. ¹⁹ In our histamine release assay, ²⁰ an inverse agonist (po), pargyline and a monoamine oxidase inhibitor (ip), were co-dosed in SD rats. After 2 h the whole brain was rapidly removed, and the concentration of *tele*-methylhistamine, a major extracellular metabolite of histamine, was measured.

Scheme 4. Reagents and conditions: (a) tert-butyl 4-hydroxy-1-piperidinecarboxylate, diisopropyl azodicarboxylate, PPh₃, THF, rt, 24 h, 62%; (b) trifluoroacetic acid, rt, 3 h; (c) $R^5R^6C=0$, NaBH₃CN, ZnCl₂, MeOH, rt, 16–20 h; (d) DIBAL, toluene, 0 °C, 1–3 h; (e) MnO₂, CH₂Cl₂, rt, 40–50 h, 45–49% over 4 steps from **16**.

Table 2 SAR of compounds **5g-i**; variation of the basic amine unit.

Compound	R	hH ₃ ^a IC ₅₀ (nM)	hERG ^b IC ₅₀ (μM)	$h\alpha_{1A}^{c}$ IC_{50} (μM)
5a	*N	1.2	2.8	2.9
5g	*N	0.68	2.9	2.2
5h	*	0.22	5.6	6.3
5i	*	0.74	2.9	6.2

^a Inhibition of R- α -methylhistamine-induced binding of [35 S]GTP γ S to human H_3 receptor. Values are means of at least two independent experiments. The maximum variability of each assay in this series was ± 3 -fold.

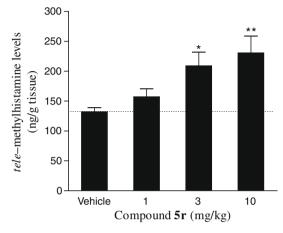
- ^b Inhibition of [³⁵S]MK-499 binding to hERG K⁺ channel in HEK293 cells.
- c Inhibition of $[^{3}H]$ Prazosin binding to human α_{1A} -adrenoceptor in LMtk $^{-}$ cells.

Table 3SAR of compounds **5j-r**; variation of the quinazolinone core.

Compound	R	Χ	hH ₃ ^a IC ₅₀ (nM)	hERG ^b IC ₅₀ (μM)	$h\alpha_{1A}^{c}$ IC ₅₀ (μ M)
5h	Н	СН	0.22	5.6	6.3
5j	5-OMe	CH	0.54	>10	4.2
5k	6-OMe	CH	0.31	3.8	5.9
51	7-OMe	CH	0.34	4.3	>10
5m	8-OMe	CH	0.48	>10	>10
5n	8-Me	CH	0.10	2.0	10
5o	8-Cl	CH	0.18	1.1	6.5
5p	8-CF ₃	CH	0.70	0.35	>10
5q	8-F	CH	0.25	7.9	4.5
5r	8-OMe	N	0.31	>10	>10

^a Inhibition of R- α -methylhistamine-induced binding of [35 S]GTP γ S to human H_3 receptor. Values are means of at least two independent experiments. The maximum variability of each assay in this series was ± 3 -fold.

- b Inhibition of [35S]MK-499 binding to hERG K+ channel in HEK293 cells.
- ^c Inhibition of [3 H]Prazosin binding to human α_{1A} -adrenoceptor in LMtk $^-$ cells.


Significant and dose-proportional elevation of *tele*-methylhistamine was observed in rat brain after oral administration of $\mathbf{5r}$ (Fig. 3).

In conclusion, we have designed a series of novel quinazolinone derivatives which had potent H_3 receptor inverse agonist activity. The major focus of this study was to eliminate the hERG and $h\alpha_{1A}$ activities of lead compound **5a**. A potent and selective derivative **5r** was identified which demonstrated suitable brain exposure along with an appropriate pharmacokinetic profile. Significant and dose-

Table 4 Pharmacokinetic parameters of **5r** in SD rats.^a

Compound	Iv (1 mg/kg)			Po (3 mg/kg)		
	CL _p (mL/min/ kg)	V _{dss} (L/ kg)	t _{1/2} (h)	C _{max} (μM)	$\begin{array}{l} AUC_{0-\infty\ h} \\ (\mu M\ h) \end{array}$	F ^b (%)
5r	29	4.8	2.0	0.57	2.1	48

- ^a Values represent the means, n = 3.
- b Based on $AUC_{0-\infty\ h}$ values after iv and po dosing.

Figure 3. Brain *tele*-methylhistamine levels in SD rats after oral administration of compound **5r**. Values are means \pm SE, determined from five experiments. *P < 0.05, **P < 0.01 (ANOVA Dunnett) compared with the vehicle control.

proportional elevation of *tele*-methylhistamine was observed in rat brain after oral administration of **5r**. Further evaluation of this class of compounds is currently underway.

References and notes

- 1. Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Nature 1983, 302, 832.
- Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M. R.; Erlander, M. G. *Mol. Pharmacol.* 1999, 55, 1101.
- 3. (a) Celanire, S.; Wijtmans, M.; Talaga, P.; Leurs, R.; de Esch, I. J. P. *Drug Discov. Today* **2005**, *10*, 1613; (b) Leurs, R.; Bakker, R. A.; Timmerman, H.; de Esch, I. J. P. *Nat. Rev. Drug Discov.* **2005**, *4*, 107.
- 4. Wulff, B. S.; Hastrup, S.; Rimvall, K. Eur. J. Pharmacol. 2002, 453, 33.
- (a) Schlicker, E.; Malinowska, B.; Kathmann, M.; Gothert, M. Fundam. Clin. Pharmacol. 1994, 8, 128; (b) Clapham, J.; Kilpatrick, G. J. Br. J. Pharmacol. 1992, 107, 919.
- 6. Witkin, J. M.; Nelson, D. L. Pharmacol. Ther. 2004, 103, 1.
- 7. Esbenshade, T. A.; Fox, G. B.; Cowart, M. D. Mol. Interventions 2006, 6, 77.
- 8. Tokita, S.; Takahashi, K.; Kotani, H. J. Pharmacol. Sci. 2006, 101, 12.
- Lin, J. S.; Dauvilliers, Y.; Arnulf, I.; Bastuji, H.; Anaclet, C.; Parmentier, R.; Kocher, L.; Yanagisawa, M.; Lehert, P.; Ligneau, X.; Perrin, D.; Robert, P.; Roux, M.; Lecomte, J. M.; Schwartz, J. C. Neurobiol. Dis. 2008, 30, 74.
- (a) Michael, Berlin; Boyce, C. W. Expert Opin. Ther. Pat. 2007, 17, 675; (b) Wijtmans, M.; Leurs, R.; de Esch, I. Expert Opin. Investig. Drugs 2007, 16, 967.
- (a) Ligneau, X.; Perrin, D.; Landais, L.; Camelin, J.-C.; Calmels, T. P. G.; Berrebi-Bertrand, I.; Lecomte, J.-M.; Parmentier, R.; Anaclet, C.; Lin, J.-S.; Bertaina-Anglade, V.; Drieu la Rochelle, C.; d'Aniello, F.; Rouleau, A.; Gbahou, F.; Arrang, J.-M.; Ganellin, C. R.; Stark, H.; Schunack, W.; Schwartz, J. C. J. Pharmacol. Exp. Ther. 2007, 320, 365; (b) Ligneau, X.; Landais, L.; Perrin, D.; Piriou, J.; Uguen, M.; Denis, E.; Robert, P.; Parmentier, R.; Anaclet, C.; Lin, J.-S.; Burban, A.; Arrang, J.-M.; Schwartz, J. C. Biochem. Pharmacol. 2007, 73, 1215.
- (a) Cowart, M.; Faghih, R.; Curtis, M. P.; Gfesser, G. A.; Bennani, Y. L.; Black, L. A.; Pan, L.; Marsh, K. C.; Sullivan, J. P.; Esbenshade, T. A.; Fox, G. B.; Hancock, A. A. J. Med. Chem. 2005, 48, 38; (b) Esbenshade, T. A.; Fox, G. B.; Krueger, K. M.; Miller, T. R.; Kang, C. H.; Denny, L. I.; Witte, D. G.; Yao, B. B.; Pan, L.; Wetter, J.; Marsh, K.; Bennani, Y. L.; Cowart, M. D.; Sullivan, J. P.; Hancock, A. A. J. Pharmacol. Exp. Ther. 2005, 313, 165; (c) Fox, G. B.; Esbenshade, T. A.; Pan, J. B.; Radek, R. J.; Krueger, K. M.; Yao, B. B.; Browman, K. E.; Buckley, M. J.; Ballard, M. E.; Komater, V. A.; Miner, H.; Zhang, M.; Faghih, R.; Rueter, L. E.; Bitner, R. S.; Drescher, K. U.; Wetter, J.; Marsh, K.; Lemaire, M.; Porsolt, R. D.; Bennani, Y. L.; Sullivan, J. P.; Cowart, M. D.; Decker, M. W.; Hancock, A. A. J. Pharmacol. Exp. Ther. 2005, 313, 176.
- 13. Medhurst, A. D.; Atkins, A. R.; Beresford, I. J.; Brackenborough, K.; Briggs, M. A.; Calver, A. R.; Cilia, J.; Cluderay, J. E.; Crook, B.; Davis, J. B.; Davis, R. K.; Davis, R. P.; Dawson, L. A.; Foley, A. G.; Gartlon, J.; Gonzalez, M. I.; Heslop, T.; Hirst, W.

- D.; Jennings, C.; Jones, D. N. C.; Lacroix, L. P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C. M.; Roberts, J. C.; Schogger, J.; Southam, E.; Stean, T. O.; Trail, B. K.; Upton, N.; Wadsworth, G.; Wald, J. A.; White, T.; Witherington, J.; Woolley, M. L.; Worby, A.; Wilson, D. M. *J. Pharmacol. Exp. Ther.* **2007**, *321*, 1032.
- 14. Nagase, T.; Mizutani, T.; Ishikawa, S.; Sekino, E.; Sasaki, T.; Fujimura, T.; Ito, S.; Mitobe, Y.; Miyamoto, Y.; Yoshimoto, R.; Tanaka, T.; Ishihara, A.; Takenaga, N.; Tokita, S.; Fukami, T.; Sato, N. *J. Med. Chem.* **2008**, *51*, 4780.
- (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Hughes, D. L. Org. Prep. Proc. Int. 1996, 28, 127.
- Ito, S.; Yoshimoto, R.; Miyamoto, Y.; Mitobe, Y.; Nakamura, T.; Ishihara, A.; MacNeil, D. J.; Kanatani, A.; Tokita, S. Eur. J. Pharmacol. 2006, 529, 40.
- Butcher, J. W.; Claremon, D. A.; Connolly, T. M.; Dean, D. C.; Karczewski, J.; Koblan, K. S.; Kostura, M. J.; Liverton, N. J.; Melillo, D. G. PCT Int. Appl. WO2002005860, 2002.
- Forray, C.; Bard, J. A.; Wetzel, J. M.; Chiu, G.; Shapiro, E.; Tang, R.; Lepor, H.; Hartig, P. R.; Weinshank, R. L.; Branchek, T. A. *Mol. Pharmacol.* 1994, 45, 703.
- Compound 5r showed a potent activity for the rat H₃ receptor (IC₅₀ = 6.4 nM) in the [³⁵S]GTPγS binding assay.
- Miyamoto, Y.; Yoshimoto, R.; Yumoto, M.; Ishihara, A.; Takahashi, K.; Kotani, H.; Kanatani, A.; Tokita, S. Anal. Biochem. 2004, 334, 89.